
The sum of two numbers is 78 and their difference is 8. What are the two numbers? Let's start by calling the two numbers we are looking for x and y.
The sum of x and y is 78. In other words, x plus y equals 78 and can be written as equation A:
x + y = 78
The difference between x and y is 8. In other words, x minus y equals 8 and can be written as equation B:
x - y = 8
Now solve equation B for x to get the revised equation B:
x - y = 8
x = 8 + y
Then substitute x in equation A from the revised equation B and then solve for y:
x + y = 78
8 + y + y = 78
8 + 2y = 78
2y = 70
y = 35
Now we know y is 35. Which means that we can substitute y for 35 in equation A and solve for x:
x + y = 78
x + 35 = 78
X = 43
Summary: The sum of two numbers is 78 and their difference is 8. What are the two numbers? Answer: 43 and 35 as proven here:
Sum: 43 + 35 = 78
Difference: 43 - 35 = 8
Sum Difference Calculator
Do you want the answer to a similar problem? Enter the sum and difference here to find the two numbers:
The Sum of Two Numbers is 78 and Their Difference is 9
Using what you learned on this page, try to figure out the next problem on our list and then go here to check the answer.
Copyright | Privacy Policy | Disclaimer | Contact