The Sum of Two Numbers is 42 and Their Difference is 7




The sum of two numbers is 42 and their difference is 7. What are the two numbers? Let's start by calling the two numbers we are looking for x and y.

The sum of x and y is 42. In other words, x plus y equals 42 and can be written as equation A:

x + y = 42

The difference between x and y is 7. In other words, x minus y equals 7 and can be written as equation B:

x - y = 7

Now solve equation B for x to get the revised equation B:

x - y = 7
x = 7 + y


Then substitute x in equation A from the revised equation B and then solve for y:

x + y = 42
7 + y + y = 42
7 + 2y = 42
2y = 35
y = 17.5


Now we know y is 17.5. Which means that we can substitute y for 17.5 in equation A and solve for x:

x + y = 42
x + 17.5 = 42
X = 24.5


Summary: The sum of two numbers is 42 and their difference is 7. What are the two numbers? Answer: 24.5 and 17.5 as proven here:

Sum: 24.5 + 17.5 = 42
Difference: 24.5 - 17.5 = 7



Sum Difference Calculator
Do you want the answer to a similar problem? Enter the sum and difference here to find the two numbers:

 


The Sum of Two Numbers is 42 and Their Difference is 8
Using what you learned on this page, try to figure out the next problem on our list and then go here to check the answer.


Copyright  |   Privacy Policy  |   Disclaimer  |   Contact